Establishing the minimal index in a parametric family of bicyclic biquadratic fields
نویسنده
چکیده
Let c 3 be positive integer such that c; 4c+ 1; c 1 are square-free integers relatively prime in pairs. In this paper we nd minimal index and determine all elements with minimal index in bicyclic biquadratic eld K = Q p (4c+ 1) c; p (c 1) c .
منابع مشابه
Solving index form equations in two parametric families of biquadratic fields∗
In this paper we find a minimal index and determine all integral elements with the minimal index in two families of totally real bicyclic biquadratic fields Kc = Q (√ (c− 2) c, √ (c+ 2) c ) and Lc = Q (√ (c− 2) c, √ (c+ 4) c ) . AMS subject classifications: Primary 11D57, 11A55; Secondary 11B37, 11J68, 11J86, 11Y50
متن کاملOn Elements with Index of the Form 23 in a Parametric Family of Biquadratic Fields
In this paper we give some results about primitive integral elements α in the family of bicyclic biquadratic fields Lc = Q( √
متن کاملOn the harmonic index of bicyclic graphs
The harmonic index of a graph $G$, denoted by $H(G)$, is defined asthe sum of weights $2/[d(u)+d(v)]$ over all edges $uv$ of $G$, where$d(u)$ denotes the degree of a vertex $u$. Hu and Zhou [Y. Hu and X. Zhou, WSEAS Trans. Math. {bf 12} (2013) 716--726] proved that for any bicyclic graph $G$ of order $ngeq 4$, $H(G)le frac{n}{2}-frac{1}{15}$ and characterize all extremal bicyclic graphs.In this...
متن کاملNotes about the linear complexity of the cyclotomic sequences order three and four over finite fields
We investigate the linear complexity and the minimal polynomial over the finite fields of the characteristic sequences of cubic and biquadratic residue classes. Also we find the linear complexity and the minimal polynomial of the balanced cyclotomic sequences of order three. Keywords—linear complexity, finite field, cubic residue classes, biquadratic residue classes
متن کاملThe structure of some 2-groups and the capitulation problem for certain biquadratic fields
We study the capitulation problem for certain number fields K of degree 4 and we show how we can determine the structures of some 2-groups as an application of this study. Let K (2) 1 be the Hilbert 2-class field of K, K (2) 2 be the Hilbert 2-class field of K (2) 1 , CK,2 be the 2component of the ideal class group of K and G2 the Galois group of K (2) 2 /K. We suppose that CK,2 is of type (2, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Periodica Mathematica Hungarica
دوره 58 شماره
صفحات -
تاریخ انتشار 2009